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The sun-synchronous orbit is one of the most frequently used orbits for earth science missions. Generally within the 
field of astrodynamics and mission analysis, the sun-synchronous orbit is understood to be a near polar orbit where the 
nodal precession rate is matched to the earths mean orbital rate around the sun. This has the effect of maintaining the 
orbit's geometry with respect to the sun nearly fixed such that the sun lighting along the groundtrack remains 
approximately the same over the mission's duration. But many engineers still lack the intuitive understanding of how 
to go about selecting the basic orbit parameters to meet their science mission needs and what exactly are the subtle 
effects that drive important small-scale geometric variations associated with the sun-synchronous orbit that relate to 
satellite and science instrument design. The existing literature and various references are tentative and even ambiguous 
from source to source. This paper is intended to provide a tutorial for practicing engineers, wanting deeper insight into 
the key characteristics of sun-synchronous orbits. The paper will develop the background and information necessary to 
explain what a sun-synchronous orbit is and how it works. Handy back of the envelope equations will be provided to 
enable the mission analyst and system engineer to do quick and simple calculations for the orbit parameters selection 
and to compute mission parameters important to satellite design without having to resort to sophisticated computer 
programs. 

I. Introduction 
The sun-synchronous-orbit (SS-0) is one of the most commonly used forms of earth orbit for space science 
missions. Historic examples of such missions include NIMBUS, TIROS, COBE, SME, LANDSAT, and 
others. More recent earth science missions based on the SS-0 are Terra, EO-1, and Aqua. And even now 
there are several future missions either under development or awaiting launch that will also utilize the SS-0 
within the coming years for their mission: Aura, CloudSat, CALIF'SO, Aquarius, and Orbiting Carbon 
Observatory. The list of past, present, and future earth orbiting sun-synchronous missions is long and 
impressive. Given the widespread use of the SS-0, it is worthwhile to review the characteristics that make 
the SS-0 so useful and therefore desirable for scientific applications. It is also productive to describe the 
process of how one goes about selecting the mission parameters defining the SS-0 mission design. 

The primary reason for the frequent utility of the SS-0 is that it readily provides many desirable orbital 
characteristics which satisfy key mission requirements. Since the orbital inclination is nearly polar (96.5 - 
102.5 degrees), the SS-0 provides global coverage at all latitudes (with the exception of just a few degrees 
from the poles). And because the position of the line of nodes remains roughly fixed with respect to the 
sun's direction, lighting conditions along the sunlit groundtrack remain approximately the same throughout 
the mission. This property of fixed nodes is also useful to satellite designers in that it results in a nearly 
constant thermal environment due to sun exposure for the satellite remaining the same over the mission life. 
Another property often important to a satellite's thermal design is that the SS-0 also provides the mission 
with a "dark-side" to the orbit which always faces away from the sun and which can sometimes be used to 
solve otherwise complex thermal problems. Still another useful characteristic is that SS-0 altitude can be 
selected over a wide, desirable range (200 - 1680 km) so that they can accommodate a wide range of 
satellite viewing geometries and conditions. Within the altitude range, another complementary 
characteristic is that discrete altitudes can be selected to provide SS-Os with groundtracks which repeat 
after a fixed interval of days. This repeat groundtrack attribute is useful to scientists in ensuring that global 
coverage is complete and repeatable over a designated sampling period desired by an investigator. 

With the utility and desirability of these first-order orbital characteristics, it is easy to understand why earth 
resource, meteorological, and climate studies missions (among others) are attracted to SS-Os, at least as an 
initial consideration for their mission design. And as the record shows, many of them do indeed select a 
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SS-0 to meet their particular needs. So how does one go about defining the best S S - 0  to meet the needs of 
a particular scientific investigation? What are the systematic steps that one can go through that enable the 
mission analyst and system designer to select the specific parameters for a SS-0 best suited to the mission's 
needs? How does one, without excessive computer analyses up front, make a selection of the SS-0 
parameters to accommodate a set of science requirements? 

With this in mind, there are several objectives for this paper: First, it is intended to aid scientists, satellite 
designers, and even mission designers (who may have forgotten) in understanding what exactly are the 
unique conditions that qualify an orbit to be called sun-synchronous? What is the specific mechanism 
within celestial mechanics that enables a SS-0 to exist? Second, the paper will define the terms and 
parameters frequently used to describe a SS-0. The paper is also intended to convey an intuitive "feel" to 
designer about the orbital geometries for SS-0's with various parameters and a "feel" for the naturally 
occurring second-order effects that cause variations in the geometry. With this intuition, the paper should 
enable one to intelligently go about selecting, as a first guess for further studies, a set of SS-0 parameters 
consistent with the mission's needs. And lastly, the paper is intended to provide some handy equations and 
algorithms that can be used to quickly explore the design space and trade one parameter against another 
without having to resort to a sophisticated, large computer programs for the analysis. Moreover, some of 
the algorithms are handy in quickly deriving answers to frequently asked questions that large computer 
analyses just don't easily answer. 

11. The Perturbations due to a Non-Spherical Earth 
What exactly qualifies an orbit to be labeled sun-synchronous? Before we can answer this question, we 
must first review some basic theory and results from celestial mechanics about how an earth orbiting 
satellite is affected by the first order perturbations due to the earth's oblateness. Almost all textbooks on the 
subject (for example Refs. 1,2, 3, and 4) discuss the theory associated with how an orbit plane is perturbed 
as a result of the earth's equatorial bulge. This bulge creates an out of plane gravitational force on the orbit 
causing the orbit to gyroscopically precess. The operative equation describing the rate at which the line of 
nodes moves owing to this bulge is given by: 

h = -1 2 2  J (%)'n * cos(i) 
P 

where p = a(1- e 2 )  is the orbit parameter (the semi-latus rectum), IZ = 4,U / u3 is the mean motion, 

and i is the inclination. ,U is of course the earth's gravitational constant and J 2  , the zonal harmonic 
coefficient, with a value for earth equal to 0.001 082 63. Thus, the nodal rate of precession is a function of 
the three classic orbital elements, namely, the semi-major axis (a) ,  the eccentricity (e), and the 

inclination (i) . (a, in the equation is the equatorial radius of the earth.) Moreover, we see from the 
equation that for inclinations c 90" the node regresses, i.e., moves clockwise as seen from the north, and for 
inclination > 90" the nodal motion is posigrade, i.e., a counter-clockwise precession as seen from the north. 
With this equation and by the proper selection of the semi-major axis, eccentricity, and inclination, we can 
cause the orbit plane to precesdregress at different rates along the equator. 

Fortunately, most earth science missions prefer to use circular or near circular orbits (i.e., a "frozen orbit"), 
thereby pre-determining the value for eccentricity to be zero. (More discussion on the "frozen orbit" will 
come later.) Therefore, for the analyses in this paper, the orbital eccentricity will be assumed to be zero or 
approximately zero such that eccentricity may be ignored as a variable in the future applications of Eq. 1. 
And with this value fixed, the precession rate of the node is reduced to depending only on the inclination 
and the orbital altitude, (h  = a - a,), through altitude's dependence on semi-major axis. 

This relation defines the nodal regression rate of an orbit, any orbit. It tells us that if we can specify values 
for the inclination and the orbit's altitude, the precession rate, can then be computed. Or conversely, given 
the precession rate and altitude we easily obtain the inclination. What is needed now is a specification of 
the nodal rate that gives the property already alluded to as the fundamental characteristic of a SS-0, i.e., 
maintains the geometry of its nodes fixed with respect to the sun. 
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1II.Selecting the Precession Rate, Q 
To simplify this discussion, we start by thinking of an idealization for the earth's motion about the sun. We 
take the motion to be circular with a period of one year. With this idealization, the rate of revolution would 
be constant and would given by (360'1365.242199 days =) 0.9856 deglday. As another approximation, we 
further consider the earth's polar axis to be perpendicular to the earth's orbit plane (as represented in Figure 
1). And because the earth's orbit is posigrade, the motion would appear to be counter-clockwise as seen 
from the north-pole. For the geometry as shown in Figure 1, it is also to be noted that the plane defined by 
the earth-sun line and the earths polar axis, on the sunlit side, define the solar meridian for observers on the 
earth. (In fact for the approximation at hand, the sun's position would be directly over the equator all year 
long.) Also, for all points north and south along this meridian, the local solar time would be 12:OO noon. 
For points west, the local time would be ante meridiem (a.m.); similarly for points east, the local time 
would be post meridiem (p.m.). Clearly, 06:OO a.m. would correspond to being on the terminator reckoned 
to the west of the solar meridian and vice-versa for 06:OO p.m. With these idealizations, we have 
established a coordinate system and geometry that enable us to describe and define other orbit parameters. 

Figure 1: Earth-Sun Geometry Schematic 

Earths orbital 
velocity 

-1 

MLT = Mean Local Time 
of Ascending Node Sun 

If we now consider a satellite with its ascending node positioned as shown in the figure, we can label the 
angle between this node and the direction to the sun (a). We also call this angle the Mean Local Time of 
the ascending node (MLT), because the usual way of describing this angle is in terms of time relative to the 
noon meridian. For an arbitrary orbit, the MLT would continually change owing to the 
regressiodprecession phenomenon described above. If, however, we were able to precess the line of nodes 
at exactly the earths mean orbital rate around the sun, the geometry shown in the figure would be preserved 
and the MLT angle with respect to the sun-line would remain constant. Thus, the selection of earth's mean 

orbital rate for 8 would, therefore, achieve the desired result of maintaining the orbit's geometry with 
respect to the sun fixed and the sun-lighting conditions along the orbit's groundtrack the same. In fact as 
shown in Figure 1, we would have a SS-0 with its ascending node at =08:00 a.m. MLT (or equivalently -60 
degrees). 

Hence, the condition for an orbit to be sun-synchronous is that the precession rate equals the earth's Mean 
Motion. When this is done, the specification of the orbit's altitude yields the inclination automatically as 
defined by Eq. 1. Figure 2 below shows how the orbital altitude and inclination for SS-Os are uniquely 
paired, i.e., selecting one determines the other, over an altitude range of general interest to earth scientists. 

. 
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Thus a scientist or system engineer wanting to define orbital parameters for a SS-0 has available the orbit's 
altitude and the orbit's MLT angle. (Here again we are still assuming that only circular orbits are of 
interest.) From the orbit altitude, the inclination is automatically specified through Eq. 1 as plotted in the 
curve in Figure 2. Specification of the MLT parameter defines the sun lighting conditions for points 
beneath the orbit as well as the duration of time spent in eclipse by the satellite. More on this later. 

Figure 2: Sun-Synchronous Condition: Inclination vs. Altitude ( e a )  
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IV. Reckoning Time 
Any textbook on astronomy, most notably a book on spherical astronomy (e.g., Refs. 5 and 6), quickly 
makes clear that the reckoning of time is a complex subject. Yet understanding Mean Solar Time and how 
it is reckoned is critically important to understanding the finer points of SS-0 mission design. 

The time interval between meridian transits of the real sun for an observer defines the apparent solar day. 
However, the use of the apparent solar day as a basis for timekeeping is inconvenient. This is because the 
sun's eastward movement against the background stars varies from day to day, making the length of the 
apparent solar day as reckoned by solar meridian passages variable. This variability is due to the earths 
elliptic orbit and the obliquity of the ecliptic. Fortunately these variations average out over the course of a 
year to be very nearly zero and this average value defines the length of the mean solar day at 86400 
seconds. 

In order to create a concept for the mean solar day similar to the apparent solar day, the mean solar day can 
be thought of as the time interval between two successive transits across an observer's meridian of an 
imaginary body referred to as the "mean sun". This mean sun is a fictitious body that moves along the 
celestial equator at a rate of advance equal to the earths Mean Motion. The mean sun completes one circuit 
around the earth in identically the same time interval as it takes the real sun to transit its path from vernal 
equinox to vernal equinox along the ecliptic. This would be the Tropical year (365.242199 days). Thus, 
the mean sun is not unlike the idealization of the sun's motion relative to the earth described earlier in 
Figure 1. But more importantly, the mean solar day is of fixed length corresponding to the interval of 
exactly one mean solar transit across the noon meridian to the next. It is for this reason that civilian 
populations use Mean Solar Time as the basis for reckoning time. Mean Solar Time and its fundamental 
unit, the mean solar day, are in effect the time standard against which all other phenomena are measured. 
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Now on any given day, the real sun will cross an observer's meridian at a time different from the noon hour 
as measured by a clock. This difference between apparent solar time and Mean Solar Time is called the 
Equation of Time. And since the parameters for the earth's orbit are known quite well and since the 
obliquity of the ecliptic is also known well, it is possible to compute the Equation of Time as a function of 
calendar day. Moreover, because the orbital parameters for the earths orbit change slowly and the 
precessional motion of the vernal equinox is also quite slow, the Equation of Time for a given date in the 
year would remain the same from year to year were it not for leap years. It is for this reason that algorithms 
to compute the Equation of Time require a calendar date as an input. As we will see, this is only a minor 
inconvenience for the applications detailed later in the paper. 

Before leaving the subject of "time", it is useful to talk about another parameter important to SS-0 mission 
design. In particular we are interested in defining the rate at which the earth rotates with respect to the 
vernal equinox. We know that at some particular instant in time the mean sun and the vernal equinox are 
coincident. After one Tropical Year they are coincident again. Over this interval, the earth has rotated 
365.242199 revs with respect to the mean sun, but one more time with respect to the vernal equinox. As a 
result, we see that the period of time, 2, in which it takes the earth to rotate once with respect to the vernal 
equinox is given by: 

) = 86164.09 seconds 
365.242 199 

1 + 365.242199 
z = 86400* ( 

Therefore, the earth's rotation rate with respect to the vernal equinox is given by 

me=--- 360" - 360" (l+f) 
z 86400 

where s = 365.242199 

Now our ultimate goal here is to develop a relationship for the rate at which earth longitude advances for a 
SS-0 as it moves around its orbit. This is important to computing groundtracks for SS-Os. We know that 
if the earth did not rotate the change in longitude between one nodal crossing and the next would be: 

hL=m,*P where P is the nodal period. 

However the orbit plane precesses along the equator at the rate described in the previous section. So when 
we include orbital precession in evaluating the change in longitude in one period, we have: 

hL=(me-&j )*p=-*  I+--- * p = -  360" * p  
86400 360" ( :) 86400 

Thus, for a SS-0, the rate of longitude advance as measured along the earth's equator is identically 360 
degrees in one mean solar day. This is a handy and useful relationship unique to SS-Os when evaluating 
how fast the groundtrack advances in longitude as a function of time. 

V. System Engineering the Mission Design 
Consistent with good system engineering practice, the first step in formulating a mission design (whether 
for a SS-0 mission or otherwise) is to gather science and mission requirements. Clearly, the first point of 
contact would be with the mission's science team to glean an understanding of the science objectives and 
science requirements from which other mission requirements would be derived. A second step would be to 
contact the mission's sponsor or program office to collect any high-level guidance, constraints, and/or 
directives to be imposed on the mission design. These too could translate directly into mission 
requirements. Next, it is always advisable to inquire about basic system considerations such as launch 
vehicle capability and launch constraints, inherent satellite and/or instrument capabilities, tracking facilities 
and ground stations to be used in data recovery, and any other inherited system capabilities that could map 
back into requirements on the mission design. Following this, these requirements, constraints, and 
capabilities would all be analyzed to derive a succinct, but traceable, set of requirements to be the basis for 
selecting orbit parameters characterizing the mission design. 
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Science requirements, probably more than any other inputs, tend to dictate the mission requirements that 
drive the selection of specific orbit parameters. Statements by the scientist about the mission lifetime, the 
need for a certain amount of geographic coverage, the frequency with which the coverage is to be repeated, 
the need to access specific targets, the acceptable distances over which measurements of targets are to be 
made, and even seasonal preferences for certain observations are the kinds of statements desired and the 
kinds of statement that most readily map into a specific mission design. (See Table 1 below.) And after 
collecting these statements, it then becomes important to carefully analyze how they flow-down into one or 
more mission requirements. One science requiremenddesire can relate to the selection of several orbit 
parameters, e.g., altitude, inclination, geographic location of an ascending node. These broad statement 
need to be traced with a connectivity to as many specific mission requirements as necessary to ensure the 
mission designer knows all that is expected. Moreover, the orbit design process is rarely a one-pass 
operation, but rather it is usually iterative where the choice of orbit parameters is generally determined only 
after extensive analyses and trades to further understand how the selected parameter best suit the mission's 
needs and only compromises the satisfaction of science objectives to an acceptable degree. These analyses 
will also enable an understanding of the sensitivities and resiliency of the mission design to possible future 
variations in the selected parameters. 

Frequently scientists are reluctant to be specific and/or quantitative about what they really want. It then 
becomes the system engineer's responsibility to draw-out these specifics by first developing an 
understanding of what is desired and then by describing the conditions provided by a particular solution for 
the orbit and its ability to achieve science objectives. This is frequently that core of the iterative cycle 
alluded to above. 

Table 1: Science Requiremenmesires Mapped to Orbit Characteristics 

Motivating Objective or 
Instrument Characteristic 
Instrument sensitivity, resolution, 
field of viewtswath-width, 
allowable elongation/ distortion 

Stated Science 
Requirements/ Desires 
Limitation on the range to a 
target; viewing angle 
constraints; 

Number and distribution of 
targets to be observed (for 
discrete targets) 

Traceable Orbit 
Characteristic 
Orbit altitude 

Area coverage to be provided 
(for continuous targets) 
Frequency with which 
targetdareas are to be sampled 
Sun-lighting conditions to be 
provided (for optical 
measurements) 
Seasonal considerations of 
observations 
Overall duratiodperiod of time 
necessary to measure some 
phenomenon through its life- 
cvcle 

measured 

Percentage of earth's surface to be 

groundtrack grid density; 
groundtrack tied point to achieve 
over-flight of specific latllon 
Orbit inclination, altitude 

over a footprint, etc. 
Unique geographic targets to be I Orbit altitude, inclination; 

- 
accessible for observation 
Allowable time interval before a Orbit altitude 
repeat observation is possible 
Consistent sun shadows for targets 

Visual access to Antarctica (for 
example) during Antarctic summer 
Life expectancy for instrument, 
system; mission life, operations 
duration, total volume of data, etc. 

Orbit nodal position and/or nodal 
Mean Local Time; orbit inclination 

Orbit nodal position and/or nodal 
Mean Local Time; orbit inclination 
Orbit altitude 

VI. The Use of "Frozen Orbits" 
Once a set of mission requirements has been derived and analyzed and unless it is very clear that the 
mission demands an elliptic orbit with a significant eccentricity, the most straightforward way of initiating 
the selection of the orbit parameters is to assume a priori a circular orbit. In practical applications, truly 
"circular" orbits around the earth don't really exist. Rather mission designers opt to use the "frozen orbit" 
as the closest realizable approximation to the theoretical circular orbit. The concept of a frozen orbit is 
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derived from the clever use of perturbation theory and judicious choices for the eccentricity, e, and 
argument of perigee, w. 
It is well known from perturbation theory [Refs. 7 and 81 that both e and w generally vary as a function of 
time. However, by the careful selection of the eccentricity and argument of perigee, the equations show 
that e and w will vary in a coupled oscillation. This functional dependency yields coupled values for e and 
w which evolve as a function of time by moving counter-clockwise around a closed contour in e-@ space 
over one apsidal period. Thus, by balancing the effects of the J ,  and J ,  perturbations on the orbit, the 

values of e and o can be maintained relatively fixed, or "frozen", with generally small oscillations with 
respect to the selected stable point. Since the value for eccentricity that enables this oscillation is small, 
i.e., on the order of 0.001 or less depending on the other orbit parameters, the frozen orbit closely 
approximates the characteristics of a real circular orbit. The nominal values of w that makes this work are 
90 or 270 degrees, thus placing the perigee nearly over (depending on the oscillation) the north or south 
pole, respectively. For most NASA-sponsored SS-0 missions, the argument of perigee is usually selected 
to be 90 degrees, i.e., orbit perigee over the north pole. 

VII. Selecting Orbit Altitude 
Accepting the frozen orbit as a basis for specifying the eccentricity, we turn now to selecting the parameter 
that probably has the greatest traceability to the suite of science requirements: altitude. Orbit altitude 
unquestionably relates to more mission requirements than do the others. Selecting the altitude or narrowing 
the range of possible altitudes acceptable to science is a good step. 

What range of orbital altitudes should be considered for science missions in low earth orbit? Wertz in Ref. 
9 defines low-earth orbit as orbits with altitudes below 1000 km. His underlying rationale is that, for orbits 
with altitudes greater than 1000 km, the Van Allen radiation belts come into play by exposing a satellite to 
greater and greater amounts of trapped radiation. This, in turn, forces the satellite designer to provide 
radiation-resistant components and piece-parts tolerant to the expected exposure. Thus, a satellites 
designed to operate above 1000 km is likely to be life-limited owing to the radiation environment or it will 
be too expensive to build. Following this reasoning, an upper bound near or just somewhat greater than 
lo00 km is taken as a reasonable value for fixing the upper bound for low earth orbit altitudes. In this 
paper, we will consider altitudes up to 1680 km for reasons driven more by coverage and access to ground 
targets than a strict consideration of radiation. 

At the low end of the altitude range there are other considerations in defining an acceptable orbital altitude. 
This is due to the fact that satellites in very low orbits (200 - 500 km depending on the satellite's ballistic 
characteristics) can be seriously affected by atmospheric drag. This drag force acts to continuously erode 
energy from the orbit and slowly decreases the semi-major axis, hence altitude. To compensate for this loss 
of energy, the satellite must make propulsive maneuvers to re-boost altitude and to restore orbital energy. 
Thus, one significant consideration when planning to use a low earth orbit is drag compensation which 
requires the expenditure of satellite propellant as a consumable. Additionally, drag compensation further 
increases the complexity of the mission operations by requiring the orbital altitude to be constantly 
monitored. Then, when conditions require, propulsive maneuvers must be planned to raise the orbit, but 
not without some adverse impact on the science data collection time and on the overall complexity of the 
mission operations. Therefore, the use of very low altitude orbits, Le., below 500 km, also has its 
drawbacks, which tend to make mission designers choose orbit with higher altitudes. 

As a practical matter in the selection of orbit altitude, drag affects all SS-0 satellites over the range of 
interest, but at altitudes higher than 500 km, it becomes a much more manageable problem, with small 
propulsive maneuvers and with maneuvers being relatively infrequent. 

Another factor in selecting a mission's altitude is associated with launch vehicle performance. As the 
curves in Figure 3 show, the mass delivered by each of three versions of the Delta I1 vehicle decreases as 
the target altitude becomes increasingly greater. It should be noted that these curves have implicit in them, 
according to Eq. 1, the variation in orbital inclination as the altitude varies. From the launch vehicle point 
of view the altitude range defining low earth orbits lies between 200 and 2000 km. Also, if we were to 
consider other launch vehicles, e.g., Atlas going to a SS-0, a similar functional dependence of delivery 
mass on altitude would be observed. Thus, for a mission and system designer, specifying the altitude for a 
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chosen SS-0 maps directly into an upper bound on the mass allowable for the satellite, and vice-versa. As 
the figure shows, it is possible to jump from one version of the Delta I1 to another in order to increase the 
mass performance, but this jump does not come without incurring greater launch costs. 

Figure 3: NASA ELV Performance Estimation Curves 

NASA ELV Performance Estimation Curve(s) 
LEO Circular with inclination Sun-Synchronous 
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Now we come to what is likely the most important consideration is selecting orbital altitude for a scientific 
mission using a SS-0. This critical consideration has to do with the viewing "access" provided by the orbit. 
The term "access" can refer to one of several things related to coverage and viewing geometry. First, it can 
refer to the actual distance that a satellite must pass relative to or over-fly a given ground target. For 
example, the scientists might have expressed a requirement that limits the line of sight distance from the 
instrument to targets to be less than some specified value. This requirement on the measurement distance 
could also be related to instrument sensitivity and/or field of view (FOV). 

In a different context, "access" could refer to the time interval between successive passes that a satellite 
makes relative to a target. In this case, the scientists may have specified another requirement that expresses 
the time interval and sampling criteria with which they want to repeat their measurements. This might be 
important to obtaining data for phenomena which have a variability driven by a time-constant. Another 
aspect of "access" could refer to the distance between adjacent groundtracks, so as to permit observations 
of a given geographic location from different vantage points and/or viewing angles, but within some 
acceptable line of sight distance. 

An approach to understanding how we can use access requirements to enable a choice of orbital altitude for 
a SS-0 is to first begin by considering a simple calculation made with Kepler's Equation to bracket the 
range of altitudes based on the repeatability of an orbit's groundtrack in just one-day. A quick survey 
shows that there are only five discrete solutions of practical interest to this problem. These five orbits have 
their orbital altitudes contained in the range between 250 and 1680 km as indicated in Table 2 below. 
Clearly this range overlaps and is consistent with the altitude range previously discussed in this section as 
being reasonable for low earth orbit science missions. These five solutions correspond to orbits which 
make exactly 12, 13, 14, 15, and 16 revolutions in one-day. The unique property possessed by each is that 
in one-day's time they complete an integer number of revolutions and then begins to repeat their 
groundtrack over again. This means that each orbit lays down a groundtrack grid on the surface of the 
earth with 12, 13, 14, etc. ascending nodal positions equally spaced around the equator. 
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Table 2: Orbit parameters for SS-0 with an integer number of revs in one-day 

Revs per Orbital Period, Equatorial 
Day, # seconds Altitude, km 

12 7200.00 1680.86 
13 6646.15 1262.09 
14 6171.43 893.79 
15 5760.00 566.89 
16 5400.00 274.42 

Distance between 
Adjacent GTs, km 

3339.59 
3082.69 
2862.50 
267 1.67 
2504.69 

To make this point, let us consider the case of 14 revs in one-day. The nodal orbital period, f' , for this 
example is computed as: 

P = 86400 I 14 = 6171.43 seconds. 

Solving Kepler's Equation for the semi-major axis and then subtracting the equatorial radius, then gives the 
altitude: 

h = ( a , - a ) ,  
2 

where a = i p (  $) 
The altitude computed for the 14 revs repeat is 893.79 km as shown in Table 2. And now another 
important piece of information is the distance between adjacent groundtracks, which is computed by 
dividing the circumference of the earth by 14: 

27T * a, I14 = 2862.50 km (a, = 6378.14 km) 

Hence, for this example, it is clear that if the orbit's groundtrack could be positioned to over-fly targets of 
interest that were separated by 2862 km along the equator, then this altitude would be ideal in providing 
opportunities for scientific observations every day. Even so, the groundtrack grid provided by this orbit is 
quite coarse. 

In most real applications, the targets are more unevenly distributed over the earth, thus requiring a 
groundtrack grid of finer mesh. In order to obtain this kind of a grid, we next consider the use of orbits 
which repeat in exactly two-days instead of one. Starting with the solutions identified for the one-day 
repeat ranging between 12 and 16 revs, we can easily see that for a two-day repeat there should be solutions 
corresponding to the integers between 24 and 32 or: 

24,25,26,27,28,29,30,31,32 

At first there appears to be a total of nine possible solutions. But this is misleading, because a simple 
analysis, for example, for the case of the 28 revs in two-days: 

P = 2*86400 I 2 8  = 1*86400 / 14 = 6171.43 seconds 

quickly shows that this orbit has identically the same period as the 14 revs in one-day (see Table 2.). In 
other words, this is a degenerate case with the one-day, 14-rev solution. (As a matter of convenience, we 
adopt the notation of 1D14R for the one-day repeat in 14 revs, which by the previous analysis is identical to 
2D28R or 4D56R and so forth.) 

Now if we consider a non-degenerate case from the list of nine, say 29 revs in two-days (2D29R), we can 
compute the orbital period as before: 

P = 2*86400 129 = 5958.62 seconds 

Again using Kepler's Equation to compute the semi-major axis, and subtracting the earths equatorial radius 
to obtain the orbital altitude, one gets: 

u = 7103.78 km or h =725.64km 
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Therefore for this case, the orbital altitude is defined, and from the altitude the inclination is inferred. 

The next thing to note about the 2D29R solution is that, since it makes 29 revs in two-days, the groundtrack 
grid now has 29 ascending nodes around the equator, thus reducing the distance between adjacent 
ascending nodes to just 1382 km. This means that an imaging instrument with a FOV oriented 
perpendicular to the groundtrack and centered on the groundtrack could with a swath-width of just 63 
degrees provide complete coverage of the entire earth, Le., global coverage with "access" to every place on 
earth for imaging, in just two days. We have effectively achieved the sought after finer groundtrack mesh, 
but at the expense of increasing the "access" interval. With the 2D29R solution, a particular target (with a 
particular viewing geometry) will be visited once in two-days. (As an aside, for some targets there will be 
two opportunities for observations of a particular target corresponding to ascending and descending passes 
relative to that target, but the viewing geometry will be different, i.e., the target will be on the right side of 
the groundtrack for one pass and on the left for the other.) 

If we now extend this process to consider orbits which repeat in 3 ,4 ,5 ,6 ,7. .  . days and so forth, then the 
first result is to realize that the number of possible solutions increases proportionately. For example, for the 
case of a seven-day repeat groundtrack, we have as possible solutions for the number of orbital revolutions 
in that interval given by: 

12*7 = 84,85,86,87, ... 108,109,110,111, and 112 = 16*7 

for a total of 29. But as before, we must carefully cull out those solutions which are redundant by having 
the same orbital period as others. When this is done, there remains a total of 24 unique solutions with an 
integer number of revs in exactly seven-days. It may be of interest to note that had we picked the eight-day 
repeat cycle, the apparent number of possible solutions would have increased to 33, but the number of 
surviving, non-degenerate solutions would not have been so plentiful after culling out the non-redundant 
solutions. This is because 7 is a prime number and 8 is not. Thus, with the eight-day repeat, the number of 
degenerate solutions is 17 out of 33, leaving only 16 viable. The message here to the mission designer is 
that the abundance of viable solutions for an integer number of revs in a given repeat cycle is much greater 
for repeat days being a prime number, i.e., 3,5,7,  1 1, 13, 17, etc. days. 

With this knowledge, it is possible to construct a matrix of viable, discrete solutions for according to the 
days in the repeat cycle versus the number of revs. And as a further step, it is possible to display this matrix 
in a graphic format as a function of orbital altitude. This is shown in Figure 4, where a subset of the total 
matrix of data for Repeat Cycles is plotted against orbital altitude (Ref. 10). (It should be noted here that 
the altitudes shown are approximate, since they are based on Kepler's Equation and do not include the 
effects of the J ,  perturbations. For preliminary mission design these are more than adequate.) 

From Figure 4, we immediately recognize two of the five solutions for the one-day repeat at: lD13R and 
1D14R. Jumping up to the two-day repeat line, we see the solutions: 2D27R and 2D29R. (These solutions 
are the only two contained in this limited subset of the matrix captured in the figure.) Moving on to the 
three-day repeat, we see, as expected, that the number of possible solutions increases: 3D40R, 3D41R, 
3D43, and 3D44R. And jumping further still to the eight-day repeat, we see solutions: 8D119R, 8D117R, 
8D115R, and so forth. 

We can see from Figure 4 that an arbitrary altitude for a SS-0 will most likely not fall onto one of the 
discrete solutions plotted in the figure. At the same time, it should be realized that due to the density of 
rational number along the real number line, an arbitrary altitude will fall onto a rational number 
corresponding to some number of revs in some number of days to repeat the cycle. The integers here may 
be quite large, but integers can nonetheless be found. Take for example the altitude of 750 km. From this 
we compute the period to be 5989.29 seconds, corresponding to 14.42575 revs per day. Diligently 
searching for a rational number that most closely approximates 0.42575 we find that 453/1064 equals this 
decimal number to the accuracy expressed. Thus, by a little manipulation we find that R = 15,349 revs in 
1064 days. In other words, the SS-0 corresponding to 1064D15349R has an equatorial altitude of 750 km. 
This demonstrates that at some level of accuracy, all orbits, regardless of their altitude, repeat their 
groundtrack if you wait long enough. 

A last interesting point to note here relates to the time interval between the laying down of adjacent 
groundtracks, since the time between observations is an aspect of orbital "access". Understanding this time 
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interval could be important to satisfying a science requirement related to some minimum time interval 
between observations of the same target, but from two different vantage points. We ask the question: what 
is the time interval between the laying down of two adjacent groundtracks? 

Figure 4: Sun-Synchronous Repeat Groundtrack Orbits 
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It should be obvious that adjacent groundtracks are not laid down consecutively. The change in longitude 
between consecutive nodal crossings for an orbit is given by the so-called "fundamental interval" and was 
discussed in a previous section as: 

AL=(w,-$)*P 

where We is the earth's rotation rate and 6 is the orbit's rate of precession. For the range of altitudes 

under consideration in this paper, AL ranges between 22.5 and 30 degrees. And with a little manipulation, 
we have AL in terms of D and R given by: 

AL = 360" * Dl R 
But the difference in longitude between two adjacent nodes is given by: 

A1 = 360" I R 
Taking the case for 8D117R as a specific example, we see that there are exactly: 

5 
8 

117 revs / 8 days = 14 - revs per day 

In other words, it takes approximately 14 revs before the earth has rotated sufficiently to allow the satellite 
to lay down a groundtrack near the initial ascending node. But because there are an integer number of revs 
(1 17) before arriving back at the original ascending node, the misses on consecutive one-day intervals must 
come in steps corresponding to rational numbers based on the number of days in the repeat, in particular n 
* 1/8 of where n is an integer between 1 and 8. Therefore, after a little more than one day, 
corresponding to exactly 15 revs, it is easy to show that the longitude difference at the node crossing from 
the initial node is 9.2308 degrees or exactly 3/8 of AL from the initial node. After two days or 29 revs, the 
miss is -6.1538 degrees, or -218 of . Now after three days, we have (3*(14 and 518 revs)= 42 and 15/8 
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= 43 and 7/8) starting on rev 44 a miss of 3.0769 degrees, or 1/8 of hL . Since this miss distance is equal 
to the value for AZ for this SS-0, we are laying down the adjacent groundtrack to and just east of the first 
groundtrack. Therefore, for the 8D117R SS-0, it takes 44 revs or 3 days, 12 minutes, and 18.46 seconds 
until the satellite crosses the equator on a groundtrack adjacent to the first groundtrack. Having found one 
solution, the time interval for the groundtrack on the opposite side of the original is obtained as: 

117 - 44 = 73 revs or 4 days, 23 hours, 47 minutes, and 41.54 seconds. 

By following this recipe, one can for an arbitrary case of R-revs in D-days find the time interval between 
adjacent groundtracks. 

In concluding this section, it is worthwhile to list (Table 3.) some handy equations useful in computing 
orbit parameters for SS-Os as a function of the number of days, D, in a repeat cycle and the number of revs, 
R, in the cycle. 

Table 3: Handy Equations 

Nodal Period, P ,  seconds 
Semi-Major Axis, a,  km 

P=86400 * D f R 

a = d m  
Equatorial Altitude, h, km 

Fundamental Interval, hL , deg 

Fundamental Interval, hL , km 

Interval between Adjacent GTs, AI, deg 

Interval between Adjacent GTs, AI,  km 
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With this coordinate system the problem of selecting the MLT for the orbit plane now becomes understood 
graphically. MLT is always in reference to the position of the mean sun, which (as in our original 
idealization) is always located along the +x-axis. So, a SS-0 with a MLT equal to 08:OO a.m. still appears 
as represented in Figure 1. And a SS-0 with a 12:OO noon MLT for its ascending node would have the line 
of nodes coincident with the x-axis. For a 06:OO p.m. MLT, the line of nodes would be coincident y-axis 
with the ascending node also situated on the +y-axis. This, therefore, provides the means for a mission 
analyst or system designer to readily visualize where the sun will be relative to the SS-0 plane. 

Figure 5: An Earth-Center Coordinate System with an Orbit Plane 

However, we know from the previous discussion about Reckoning Time that the real sun does not confine 
its motion to be strictly north-south along a meridian. Rather, we have to take into account the Equation of 
Time, which describes the apparent sun's departures from the meridian containing the "mean sun". When 
this is done and if we simultaneously make a plot of the sun's changes in declination as a function of the 
Equation of Time, we get a figure known as the analemma, shown in Figure 6 for the year 2005. Now the 
analemma in declination - Equation of Time space appears as a distorted figure-eight and accurately shows 
the real sun's position with respect to the "mean sun" as a function of calendar day during the year 2005. 
Further remember that in declination - Equation of Time space the "mean sun" sits at the origin. The figure 
also shows how the true sun moves with respect to the "mean sun". 

Interestingly, the shape and orientation of the analemma with respect to the equator and the mean solar 
meridian remain practically invariant from year to year. And one analemma would be good for all time 
were it not for leap years, which cause the sun's actual position on the analemma to hop slightly back-and- 
forth along the path from year to year. 
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Figure 6: Analemma in Declination - Equation of Time Space 
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The analemma can be used to conveniently analyze the sun's motion relative to a SS-0's plane. This 
convenience is achieved by recognizing that we can move the figure of the analemma as shown in Figure 6 
to a position around and centered on the x-coordinate axis of our system shown in Figure 5. When this is 
done, we get Figure 7. 

So with the analemma, represented in the special coordinate system, enables us to visualize graphically 
how the sun moves with respect to the orbit plane, which remains fixed. For the sample orbit shown in the 
figure, it is clear that the real sun as it moves along the analemma path appears, at times, to approach and, 
at other times, to recede from the orbit plane as a function of calendar day in a year. Equally important, 
that same relative motion is repeated year after year. 

Finally from Figure 7 it should be clear that, except for the 12:OO a.m. and 12:OO p.m. SS-Os, there is a dark 
side of the orbit, despite the sun's real movement along the analemma throughout the year. That is to say 
that the sun's position always remains on one side of the orbit plane or the other. The 12:OO a.m. and 12:OO 
p.m. SS-Os have the unique property of maximizing the time spent by a satellite in the earth's shadow per 
rev and can allow sun-light to fall on all sides of a satellite. 
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Figure 7: Analemma with respect to a SS-0 

One can compute the unit vector that points from the earth to the sun, ŝ  , for a given point on the analemma 
by reading off data from Figure 6. If 6 is the sun's declination and E is the value for the Equation of Time 
for a particular point on the figure-eight, the unit vector directed at the real sun in our special coordinate 
system is given by: 

S  ̂ = (cos S C O ~ E ) ~ "  + (cos Ssin E); + (sin ~ ) i  
This equation will become handy in the next section. 

IX. Calculating Beta-Angle for SS-Os 
Using the special rotating coordinate system defined in the previous section, it is interesting to analyze 
properties of SS-Os related to how the direction of the real sun changes and even how the duration of time 
spent in the earth's shadow varies. We recognize that the parameter for a SS-0 important to variations in 
the solar geometry is determined by the orbit's MLT and that angle is defined with respect to the mean solar 
meridian. On the other hand, the real sun moves along the analemma. This means that the real sun's 
position relative to the orbit plane for a SS-0 varies over the course of a year causing the sun's direction to 
vary. 

On the celestial sphere, the angular distance between the real sun's position on a given day and the closest 
point on the orbit plane is defined as the Beta-Angle. Said differently, the Beta-Angle is the angle between 
a vector directed at the sun and the perpendicular projection of that vector into the orbit plane. Beta-Angle 
can have either a positive or negative value, depending on which side of the orbit the sun is located. If the 
sun is on the same side of the orbit plane as the angular momentum vector, the Beta-Angle is positive; if on 
the opposite side, it is negative. 

The usual way of computing Beta-Angle for an orbit as a function of time is to use a computer program, 
e.g., STK, SOAP, OASYS, Free-Flyer, (Refs. 11 - 14) which contains algorithms for both the solar 
ephemeris and for propagating the orbit's elements in time. For each day over a period of evaluation, the 

orbital elements are used to determine the angular momentum vector, h , recognizing that the angular 
momentum vector changes direction in inertial space with time owing to orbital precession (and other 
perturbations). From the solar ephemeris, the vector directed to the sun, s  ̂ , is evaluated. Then by a simple 
dot-product of the two vectors (appropriately unitized), we readily obtain the Beta-Angle as: 

A 

p = sin-' (i s^) 
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Frequently this calculation is repeated over an interval of interest to the system engineer to determine the 
maximum and minimum values of Beta-Angle and how it varies in between. This was done for the Aqua 
satellite from October 2003 through January 2006 with the results shown in Figure 8 (Ref. 15). (This 
figure represents an operational analysis of Aqua's orbit to predict how the Beta-Angle will evolve in time, 
with all order of effects and perturbations taken into account.) The first observation to be made about the 
figure is that the Beta-Angle for this sun-synchronous satellite has a sinusoidal pattern that repeats year to 
year. From the one can see that, even though the inclination and MLT remain essential constant over a 
one-year period, the value of the Beta-Angle ranges between 17 and 29 degrees in 2004 and between 18 
and 3 1 degrees in 2005. Moreover, the cyclic pattern of 2004 is repeated in 2005 with two maxima and 
two minima in both years. And looking closely at the figure, it is apparent that from year to year the 
absolute minimum for Aqua's Beta-Angle occurs in the month of July. Likewise, the absolute maximum 
occurs in November. 

Figure 8: AQUA Solar Beta-Angle Prediction 
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In order to understand the cause of this behavior, we must first describe Aqua's SS-0 parameters. Aqua 
flies in a 16-day repeat with 233 revs, i.e., it's a 16D233R SS-0. From this designation and by use of 
equations previously provided, we quickly calculate the equatorial altitude as 705.3 km. And from Eq. 1 or 
Figure 2, we can quickly determine that the inclination is 98.2 degrees. Next we need a specification of 
Aqua's MLT. 

The actual value of Aqua's MLT varies quadratic with time, owing to luni-solar perturbations to the orbital 
inclination. But for the system engineer who is more concerned about defining the orbit's sun-lighting 
conditions and sun-lighting effects on science, this quadratic variation is more of an orbit maintenance 
detail left to the astrodynamist after the basic value or range of values for MLT has been chosen. We can 
gain insight into how to go about selecting a desirable value for the MLT, which fixes the orientation of a 
SS-0, by studying the Aqua orbit. For Aqua, the MLT is allowed to vary in a range between 01:30 and 
01:45 p.m. This corresponds to the ascending node being between 22.5 and 26.5 degrees with respect to 
the meridian of the mean sun, and this choice has provided the Aqua scientists with afternoon sun-lighting 
conditions that they desired. Thus, the Aqua orbit with respect to the rotating coordinates is similar to what 
is shown in Figure 7 for the arbitrary orbit. And from data associated with the generation of Figure 8 (Ref. 
1 l),  the average MLT for Aqua in the year 2004 was predicted to be 01:34:20 p.m. By 2005, the average 
MLT has increased to 01:40:30 p.m., or 25.13 degrees. We will use the 2005 value for our calculations 
here. 
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We now have values for inclination (98.2 degrees) and for the MLT (25.13 degrees) for the Aqua orbit (in 
2005). We next want to see if we can use this information in computing the solar Beta-Angles and thereby 
develop an understanding of the shape and characteristic of the Beta-Angle curve shown in Figure 8. We 
shall do this by using the analemma for characterizing the solar movement relative to the orbit plane. First, 
we compute the orbit's angular momentum vector as: 

i = (sin(i> sin(Q>)i" - (sin(i> c o s ( ~ > ) j  + cos(i)i 

where i is the inclination and Q is the MLT angle. We assume that this vector remain fixed, i.e., constant, 
for the year 2005. We know from Figure 8 that the absolute minimum Beta-Angle occurs in July. So, we 
take from the analemma curve the values for declination and the Equation of Time of the sun on July 10" 
(S= 22.00 and E =  1.33 degrees) and substitute them into the equation for the sun vector given in the 
previous section. When we take the arcsine of the dot-product of these two vectors, we obtain a value of 
approximately 18 degrees for p, in agreement with the value read off Figure 6. Thus, we have a point on 
the analemma corresponding to a point and date on the Beta-Angle curve in Figure 8. If we now refer to 
Figure 7, spotting our point on the analemma as before, and look at how the apparent angular distance to 
the orbit plane increases and shrinks as we move along the analemma, we will realize that from the July 
timeframe the sun's motion relative to the orbit plane slowly begins to increase and continues to increase 
until November 2005. In November it reaches a maximum angular separation from the orbit plane. 
Interestingly, this behavior is mapped out identically in Figure 8. 

After November, again moving along the analemma, the angular separation begins to decrease through the 
month of February where it again reaches a local minimum. This behavior is also shown in Figure 8. After 
the February local minimum, the sun continues along the analemma increasing its separation from the orbit 
plane going through yet another local maximum during the April-May timeframe and then proceeds to 
decrease to the July minimum. From this, we see that the analemma allows us to completely characterize 
the time variations of the Beta-Angle for Aqua's SS-0. 

Using the same analysis approach, the mission analyst can calculate the Beta-Angle profile for any 
arbitrary SS-0. First selecting the orbit altitude, which in turn specifies the inclination, and next selecting 
the MLT angle, it is possible to set up a graphic similar to Figure 7 that shows the analemma with respect 
to the SS-0 plane. From this graphic and by examining the relative separations between the analemma and 
the orbit, the analyst can quickly visualize how the Beta-Angle will vary over a year. Therefore, without 
computer tools, it is easy to find the points of greatest and least angular separation between the analemma 
and the orbit, and then by picking selected points in between, compute a figure similar to Figure 8. 

X. Calculating Shadow Time 
As a final set of calculations often useful to the mission analyst or system engineer, we provide a quick 
algorithm for evaluating the time interval that a SS-0 satellite spends in the earth's shadow given the Beta- 
Angle. Following the algorithm presented in Ref. 9, it is shown there that the time in shadow is a function 
of a satellite's orbital altitude and Beta-Angle at the time of evaluation. From the semi-major axis, a , we 
calculate one-half the angle subtended by the earth's figure as seen from the satellite, q , according to: 

q = sin-' (a, I a) 

Referring to a coordinate system centered on the satellite with the z-axis coincident with the angular 
momentum and the x-y plane coincident with the orbit plane, we would see the figure of the earth centered 
at some point along the orbit plane. Let us take the position marked by the center of the earth as defining 
the direction of the x-axis relative to the coordinate system's origin. If we were standing on the satellite 
looking at the celestial sphere, we would see the edge of the figure of the earth circumscribing a small 
circle with the x-axis as its pole and with a radius equal to q . Anything that passes into that small circle 
would be occulted by the earth. Now if the Beta-Angle, p, is the angle between the sun and the orbit 
plane, the sun would be positioned at some arbitrary longitude measured along the orbit plane from the x- 
axis. p would be equivalent to the sun's latitude measured along a meridian line from the z-axis to the x-y 
plane. Moreover, because of the satellite's motion around the earth, the sun would appear to revolve around 
the z-axis as a pole circumscribing a small circle of radius equal to (90" - p). With this picture in mind, it 
is clear that if p is greater than q , then the figure of the sun would never be occulted by the figure of the 
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earth as it revolved around. That is, the satellite would not enter into the earths shadow. On the other 
hand, if p is less than q , then indeed the sun would be occulted by the figure of the earth. See Figure 9. 

Figure 9: Calculating Shadow Time 
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Again following the algorithm outlined in Ref. 9, we note that, when p i s  less than q , the small circle that 
the sun moves along intersects the small circle defining the figure of the earth. When that occurs, we have 
the spherical triangle indicated in Figure 9. From the figure, it should be noted that the angle 8 /  2 is just 
one-half of the mean anomaly angle that the sun must move through in order to transit behind the earth's 
figure. Solving this triangle for 8 / 2 , we get: 

cos(8/2) = cos (~ ) / cos (p )  

Solving for 8, we get the time interval spent in the earth's shadow as: 

A t = -  " P  
360" 

Perhaps the situation of greatest interest is the calculation of the maximum shadow time. This clearly 
occurs for the smallest Beta-Angle. Performing a sample calculation for Aqua's orbit, we recall that the 
minimum Beta-Angle was =17 degrees. Solving the equation above for q , we get 64.2 degrees. Now, 
substituting these into the equation derived from the spherical triangle gives us: 

8 /  2 = 62.9' and At = 125.6'/360' *P = 38.9 minutes 

Clearly, with the Beta-Angle profile computed as described in the previous section, specific values for p 
can then be used with this technique for obtaining a good estimate for the time spent by a sun-synchronous 
satellite in earth shadow. Moreover, by making the evaluation for both the max and min values for p i t  is 
possible to determine the max and min values of shadow time. 
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